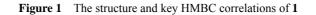
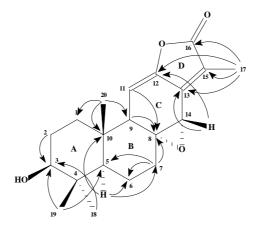
A New Diterpene from Suregada glomerulate(Blume) Baill


Su Li HE, Ruo Yun CHEN*

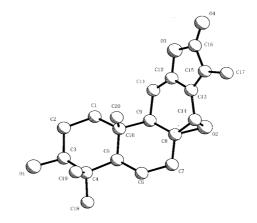

Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050

Abstract: A new diterpene with an abietane skeleton, 3β -hydroxy- 8α , 14α -epoxyabieta-11, 13(15)dien-16, 12-olide, was isolated from the root of *Suregada glomerulate(Blume)* Baill. Its structure was elucidated on the basis of spectroscopic and X-ray crystallographic analysis.

Keywords: Suregada glomerulate(Blume) Baill, diterpene, abietane, 3β -hydroxy-8 α , 14α -epoxy-abieta-11, 13 (15)-dien-16, 12-olide, X-ray crystallographic analysis.

The genus suregada comprises about 40 species, which distribute in southeast of Asia and Oceania(north of Australia). *Suregada glomerulate(Blume)* Baill and *Suregada aequorea* are the only two species of this genus found in China¹. *Suregada glomerulate (Blume)* Baill has not ever been reported for its chemical or medicinal research. A new diterpene with an abietane skeleton, 3β -hydroxy- 8α , 14α -epoxyabieta-11,13(15)-dien-16,12-olide, was obtained from the root of *Suregada glomerulate (Blume)* Baill. This paper deals with the structure elucidation of this compound.

^{*} E-mail: ruoyunchen@hotmail.com


Su Li HE et al.

The EtOAc extract derived from the ethanolic extract was separated by silica gel column chromatographies to give the new compound, named 3β -hydroxy- 8α , 14α -epoxyabieta-11,13 (15)-dien-16,12-olide **1**.

Compound 1 was isolated as colorless needle, m. p. 247-248°C (Me₂CO) , $[\alpha]_{D}^{25}$ +123 (c 0.10, CHCl₃). Its molecular formula was determined as C₂₀H₂₆O₄ by HREIMS m/z 330.1834 [M]⁺(calcd. for C₂₀H₂₆O₄ 330.1831). IR spectrum (KBr) revealed the presence of hydroxyl (3579 cm⁻¹), α , β unsaturated γ -lactone carbonyl (1747 cm⁻¹) and olefinic groups (1653 cm⁻¹) in **1**. The NMR spectrum of **1** in CDCl₃ exhibited four methyl signals, two oxygen-substituted methines at $\delta_{\rm C}$ 78.3 (C-3) and $\delta_{\rm H}$ 3.72 (dd, 1H, J 4.5, 11.5Hz, H-3), $\delta_{\rm C}$ 54.4 (C-14) and $\delta_{\rm H}$ 3.72 (s, 1H, H-14), one carbonyl group of lactone ($\delta_{\rm C}$ 170.4) and four olefinic carbons. The ¹H and ¹³C–NMR spectra of **1** were similar to those of ent-8a, 14a-epoxyabieta-11, 13 (15) -dien-16, 12-olide (jolkinolides A), except for A ring which has a substitution of 3β -OH². This was confirmed by HMBC experiment (see Figure 1). The two methyl protons (δ 1.08, H-18; δ 0.84, H-19) as well as H-2 (δ 1.69) showed long range correlations with C-3 (δ 78.3) respectively which indicated that the hydroxy group might be located at C-3. The β -configuration of 3-hydroxy group was suggested by the large coupling constants between H-3 and H-2. ¹H and ¹³C-NMR chemical shifts were assigned (see **Table 1**) from a combination of 2D heteronuclear ¹³C-¹H (HMQC, HMBC) correlations. The relative configuration of 1 was comfirmed by X-ray crystallographic analysis, which indicated that an abietane skeleton for the molecule (see Figure 2).

No.	δ $_{ m H}$	$\delta_{\rm C}$ (DEPT)
1	1.78(m,1H), 1.42(m,1H)	37.7(CH ₂)
2	1.69(overlap,2H)	27.0(CH ₂)
3	3.33(dd,1H,4.5,11.5)	78.3(CH)
4		39.2(C)
5	1.23(m,1H)	52.9(CH)
6	1.84(m,2H)	20.5(CH ₂)
7	1.64(m,1H),2.11(m,1H)	34.0(CH ₂)
8		61.0(C)
9	2.60(d,1H,5.0)	51.6(CH)
10		41.1(C)
11	5.42(d,1H,5.0)	103.4(CH)
12		147.7(C)
13		144.8(C)
14	3.72(s,1H)	54.4(CH)
15		125.5(C)
16		170.4(C)
17	2.06(s,3H)	8.7(CH ₃)
18	1.08(s,3H)	28.3(CH ₃)
19	0.84(s,3H)	15.6(CH ₃)
20	0.74(s,3H)	15.0(CH ₃)

Figure 2 The result of analysis X-ray structure of compounds 1

Acknowledgment

We are grateful to the Natural Science Foundation of Beijing (No. 2042020) for support of this research.

References

- H. X. Qiu, S. M. Huang, Y. T. Zhang, *Zhongguozhiwuzhi (Flora Reipublicae Popularis Sinicae*, in Chinese), Science press, Beijing, **1996**, *44*(2), p.174.
 A. R. Lal, R. C. Cambie, P. S. Rutledge, *et al.*, *Phytochemistry*, **1990**, *29*(7), 2239.

Received 5 July, 2004